博客
关于我
神经网络、图像分类、卷积网络等,论文推荐附论文地址
阅读量:607 次
发布时间:2019-03-09

本文共 790 字,大约阅读时间需要 2 分钟。

循环神经网络三十几装修指南

收藏优质资源,懂技术者必备

说到循环神经网络(RNN),如果你只是了解LSTM和GRU,那可就(low-move)啦!让我们一起挖掘更深层次的知识库,说不定你会惊喜发现这个世界有多大。

在RNN的世界里,当你了解完LSTM后,很可能会问:还有其他什麽Cell吗?别担心,这里有好货等待你领取。

每当我们谈论RNN单元时,QRNN模型很可能是咱们提到的第一位(不能说最好的,只能说最接近完美的)。它 arcade releases yet another version, changing how we understand RNNs.

QRNN模型的核心在于它独特的门控机制,这种机制不仅仅是简单的LSTM或GRU,而是设想了一个全新的世界。这点值得我们花点时间去了解和思考.

接下来让我们一起来看看,除了一路的LSTM之外,还有这个行业的另一大 secretive: SRU(Hidden)单元。它和QRNN有着异曲同工的特点,但又有独特之处——SRU在网络设计上增加了一个直连层次的变化(这点特别值得关注)。这样设计让它在理论和实践中都有独特的优势。

对于喜欢独立研究的你来说,IndRNN采用与ReLu等非饱和激活函数搭配,会让你对模型的鲁棒性有全新的理解和认识。说到这里,想起(Memories)的参与,它们为模型带来了更强的记忆机制,这点值得任何入门研究者深入探讨。

最后一个好货——JANET单元。这台单元以一种独特的方法整合了Transformer结构的知识,给予你前所未有的灵活性。可以说,这是一个对传统RNN结构的全新诠释和提升。

以上所述都是你在深度学习领域中必备的基础知识。希望每个观点都能为你的学习之路带来帮助。如果你想知道更多内幕内容,你可以参考相关论文,但请确保以开放心态来探索。毕竟,学习本身就是一场永不停止的探索之旅。

转载地址:http://icupz.baihongyu.com/

你可能感兴趣的文章
nrm —— 快速切换 NPM 源 (附带测速功能)
查看>>
nrm报错 [ERR_INVALID_ARG_TYPE]
查看>>
NS3 IP首部校验和
查看>>
NSDateFormatter的替代方法
查看>>
NSError 的使用方法
查看>>
NSGA-Ⅲ源代码
查看>>
nsis 安装脚本示例(转)
查看>>
NSJSON的用法(oc系统自带的解析方法)
查看>>
nslookup 的基本知识与命令详解
查看>>
NSNumber与NSInteger的区别 -bei
查看>>
NSOperation基本操作
查看>>
NSRange 范围
查看>>
NSSet集合 无序的 不能重复的
查看>>
NSURLSession下载和断点续传
查看>>
NSUserdefault读书笔记
查看>>
NS图绘制工具推荐
查看>>
NT AUTHORITY\NETWORK SERVICE 权限问题
查看>>
NT symbols are incorrect, please fix symbols
查看>>
ntelliJ IDEA 报错:找不到包或者找不到符号
查看>>
NTFS文件权限管理实战
查看>>